Optimization of Model-free Adaptive Controller Using Differential Evolution Method

نویسنده

  • Leandro dos Santos Coelho
چکیده

It is well-known that conventional control theories are widely suited for applications where the processes can be reasonably described in advance. However, when the plant’s dynamics are hard to characterize precisely or are subject to environmental uncertainties, one may encounter difficulties in applying the conventional controller design methodologies. Despite the difficulty in achieving high control performance, the fine tuning of controller parameters is a tedious task that always requires experts with knowledge in both control theory and process information. Nowadays, more and more studies have focused on the development of adaptive control algorithms that can be directly applied to complex processes whose dynamics are poorly modeled and/or have severe nonlinearities. In this context, the design of a Model-Free Learning Adaptive Control (MFLAC) based on pseudo-gradient concepts and optimization procedure by Differential Evolution (DE) is presented in this paper. DE algorithms are evolutionary algorithms that have already shown appealing features as efficient methods for the optimization of continuous space functions. Motivation for application of DE approach is to overcome the limitation of the conventional MFLAC design, which cannot guarantee satisfactory control performance when the plant has different gains for the operational range when designed by trialand-error by user. Numerical results of the MFLAC with particle swarm optimization for a nonlinear control valve are showed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive

In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...

متن کامل

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

Active Vibration Control of Flexible Beam using Differential Evolution Optimisation

This paper presents the development of an active vibration control using direct adaptive controller to suppress the vibration of a flexible beam system. The controller is realized based on linear parametric form. Differential evolution optimisation algorithm is used to optimize the controller using single objective function by minimizing the mean square error of the observed vibration signal. F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008